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In this paper, an analytical two-dimensional model is presented for the acousto-elastic
behaviour of double-wall panels with a thin viscothermal air layer. The model for the air is
based on the low reduced frequency solution as introduced by Beltman (1998 Ph.D. ¹hesis,
;niversity of ¹wente; 1999 Journal of Sound and <ibration 227, (Part I), 555}586; 227 (Part
II), 587}609; Beltman et al., 1997 Journal of Sound and <ibration 206, 217}241; 1998 Journal
of Sound and <ibration 216, 159}185) [1}5] and includes, apart from inertia and
compressibility, the e!ects of viscosity and thermal conductivity. With the analytical model
eigenfrequencies were determined and response and transmission calculations were
performed. It is shown that high damping coe$cients for double-wall panels can be obtained
by using the viscous characteristics of the #uid layer. The model makes it possible to conduct
parameter analyses very easily and e$ciently, which is important for design studies.
Furthermore, the model gives exact results for both the vibrational behaviour and the sound
transmission characteristics of double-wall panels which can be used to validate numerical
codes.
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1. INTRODUCTION

Double-wall structures consisting of two #exible plates separated by a thin air layer as
shown in Figure 1 are often used to minimize to the sound transmission from one room to
another or from noisy machinery to the environment. Beranek and Work [6] were among
the "rst to set up a model for the sound transmission through unbounded double walls with
an inviscid #uid in between. A similar model was used by London [7]. Mulholland et al. [8]
included sound absorbing material. Trochidis [9] and Trochidis and Kalaroutis [10]
modelled the dissipative behaviour of double-wall panels by incorporating the viscosity of
the medium. They also took into account the #exibility of the walls. However, they
modelled only one-way coupling, i.e., they used the vibrational behaviour of the plate as
a boundary condition for the #uid. MoK ser [11] extended their model with compressibility
e!ects. Fully coupled models with viscothermal e!ects were developed by Fox and Whitton
[12], OG nsay [13] and Beltman [1]. For double walls with large gaps, a model which is based
on the uncoupled modal behaviour is often used, e.g., Desmet and Sas [14]. For high
frequencies statistical models can be applied, e.g., reference [15]. In the present paper, the
fully coupled model with viscothermal e!ects developed by Beltman will be applied to
model double-wall panels with a thin viscothermal air layer. This model is very e$cient and
is complete, i.e., it includes all relevant e!ects. Furthermore, it is suitable for parameter
studies. Besides the vibro-acoustic behaviour of the panel, the sound radiation
0022-460X/01/240699#21 $35.00/0 ( 2001 Academic Press



Figure 1. Double-wall panel with thin air layer.
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characteristics of the structure will also be considered. First, the coupled acousto-elastic
model will be presented. For a given con"guration results of modal and harmonic response
calculations will be presented. In the latter part, sound transmission characteristics of the
double-wall panel will be discussed.

2. MODEL FOR THE DOUBLE-WALL PANEL

For the dynamical behaviour of the double-wall structure a fully coupled formulation is
used based on the low reduced frequency model for the air layer between the plates and the
Kirchho! plate equation for the structural behaviour of the plates [6]. There is no coupling
between the external air and the plates, because its in#uence on the dynamical behaviour of
the panel is very low compared with the in#uence of the air layer. In this section the model
for a "nite double-wall panel will be presented. In the subsequent sections, numerical results
for a two-dimensional con"guration without variations in the yN direction will be considered.

2.1. LOW REDUCED FREQUENCY MODEL

In Figure 1, two #exible plates, 1 and 2, with identical dimensions 2l
x
and 2l

y
but di!erent

thicknesses t
1

and t
2

are located parallel to each other. They perform small harmonic
oscillations in zN direction with an angular frequency u around their equilibrium positions.
The distance between the plates is given by hM (xN , yN , t) and 2h

0
is the mean thickness of the air

layer. Beltman et al. [2] derived a low reduced frequency model for the viscothermal wave
propagation in the air layer. This model includes the e!ects of inertia, compressibility,
viscosity and thermal conductivity of the air. The model is derived from the Navier}Stokes
equation, the equation of continuity, the equation of state for an ideal gas and the energy
equation. The basic assumptions are that the perturbations are small and harmonic, there is
no mean #ow and no internal heat generation, the #uid is homogeneous and the oscillating
#ow is laminar. Furthermore, it is assumed that the thickness of the air layer is much smaller
than the acoustic wavelength. Therefore, the pressure distribution can be assumed to be
constant across the air layer. The perturbations are written in non-dimensional form by
using undisturbed conditions.s The velocity of the air in the layer is made dimensionless
with the speed of sound c

0
. Note that in the low reduced frequency model the velocity,

density and temperature perturbations, in contrast with the pressure, vary across the layer
thickness:
sA list of symbols is given in Appendix B.



DOUBLE-WALL PANELS 701
f Distance between the #exible plates:

hM (x, y, t)"h
0
[2#[h

1
(x, y)!h

2
(x, y)] e*ut], (1)

f Pressure in the air layer:

pN (x, y, t)"p
0
[1#p (x, y)e*ut], (2)

with p
0
"c2

0
o
0
/c,

f Density in the air layer:

oN (x, y, z, t)"o
0
[1#o (x, y, z) e*ut], (3)

f Temperature in the air layer:

¹M (x, y, z, t)"¹
0
[1#¹(x, y, z) e*ut], (4)

f Velocity in the air layer:

v6 (x, y, z, t)"c
0
v(x, y, z) e*ut. (5)

The dimensionless co-ordinates are given by x"uxN /c
0
, y"uyN /c

0
and z"zN /h

0
. When the

following dimensionless numbers are introduced, k
px
"ul

x
/c

0
and k

py
"ul

y
/c

0
the

dimensionless co-ordinates vary as !k
px
)x)k

px
, !k

py
)y)k

py
and !1)z)1.

The dimensionless perturbations are substituted in the basic equations and the higher
order terms are neglected. The resulting equations for the perturbations can be written in
a linear non-dimensional form [1]. The linearized equation for the pressure perturbation of
the #uid in the air layer is

$2p!C(s)2p"n (sp)C (s)21
2
[h

1
!h

2
], (6)

where the non-dimensional operator $2 is given by

$2"
L2

Lx2
#

L2

Ly2
. (7)

In the low reduced frequency model several independent dimensionless parameters can be
distinguished:

shear wave number: s"h
0S

o
0
u

k
,

reduced frequency: k"
uh

0
c
0

,

square root of the Prandtl number: p"S
kC

p
j

,

ratio of speci"c heats: c"
C
p

C
v

,
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where k is the dynamic viscosity, j is the thermal conductivity and C
p
and C

v
are the speci"c

heats at constant pressure and at constant volume respectively. The propagation of pressure
perturbations is determined by the propagation coe$cient C (s). This coe$cient is a function
of the shear wave number and thus also of the frequency:

C (s)"S
c

n (sp)B (s)
, (8)

B (s)"
tanh(sJi)

sJi
!1, (9)

n(sp)"C1#A
c!1

c B B (sp)D
~1

. (10)

The wave propagation in the air layer is a!ected by thermal and viscous e!ects. The
function B (s) includes the viscous e!ects, whereas n (sp), which can be interpreted as
a polytropic coe$cient, accounts for the thermal e!ects. Note that the product sp in
equation (10) does not depend on the viscosity k so only thermal e!ects are involved. The
polytropic coe$cient relates the pressure to the density in a polytropic relation:

pN
oN n(sp)

"constant. (11)

The right-hand side of equation (6) takes into account the motion of the plates. The low
reduced frequency model can be used when the following conditions are ful"lled: k@1 and
k/s@1, which means that, among others, the thickness of the air layer is much smaller than
the acoustic wavelength. Only in extreme situations these conditions are not ful"lled as
shown by Beltman [1]. In the present study the conditions are satis"ed.

2.2. KIRCHHOFF PLATE EQUATION

To describe the motion of both thin plates, subjected to the pressure "eld in the air layer,
the so-called Kirchho! equation is applied. The Kirchho! equation is valid for the
vibrational behaviour of thin isotropic plates with constant thickness. Only bending stresses
are taken into account and normals to the midsurface of the undeformed plate remain
straight and normal to the midplane during deformation. Rotary inertia and shear
deformations are neglected. The equations of motion read:

$4h
1
!

X2
1

k4
px

h
1
"

X2
1
e
1

ck4
px

k2
p, (12)

$4h
2
!

X2
2

k4
px

h
2
"!

X2
2
e
2

ck4
px

k2
p, (13)

where the non-dimensional operator $4 is

$4"
L4

Lx4
#2

L4

Lx2Ly2
#

L4

Ly4
(14)
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and the dimensionless frequency X
j
is

X
j
"uS

l4
x
o
pj

t
j

D
j

. (15)

o
pj

is the density of the plate material and D
j
the bending sti!ness of plate j ( j equals 1 or 2).

D
j
is given by

D
j
"

E
j
t3
j

12(1!l2
j
)
, (16)

where E
j
and l

j
are Young's modulus and Poisson's ratio respectively. The dimensionless

constant e
j
"o

0
h
0
/o

pj
t
j
is a measure for the ratio of mass per unit area between the air layer

and plate j. The right-hand sides of equations (12) and (13) represent the in#uence of the air
layer on the dynamical behaviour of the two plates. Note that for p"0 the uncoupled
equations of motion for the plates in vacuum are obtained.

2.3. PROBLEM DEFINITION

The models derived in the previous sections lead to a coupled formulation for the
double-wall panel. For convenience of the reader the equations governing the problem are
summarized:

$2p!C(s)2p"n(sp)C (s)2 1
2
[h

1
!h

2
], (17)

$4h
1
!

X2
1

k4
px

h
1
"

X2
1
e
1

ck4
px

k2
p, (18)

$4h
2
!

X2
2

k4
px

h
2
"!

X2
2
e
2

ck4
px

k2
p. (19)

In the remaining of this paper the vibro-acoustic behaviour of a double-wall panel with
simply supported aluminium plates separated by a viscothermal air layer will be
investigated. The plate is in"nite in the y direction and only variations in the x direction will
be considered. The following material properties are used:

o
p1,2

"2710 kg/m3, E
1,2

"70]109 N/m2, l
1,2

"0)3,

o
0
"1)2 kg/m3, c

0
"340 m/s, k"18)2]10~6 Pa s,

j"25)6]10~3 W/m K, C
p
"1004 J/kg K, c"1)4. (20)

Note that the Young's modulus is a real number so no structural damping is involved. The
only damping in the double-wall panel is introduced via the air layer.

3. EIGENFREQUENCIES

In this section, eigenfrequencies for various thicknesses of the air layer are presented. For
reasons of convenience, only simply supported double-wall panels which are in"nite in the



704 T. G. H. BASTEN E¹ A¸.
y direction and where the air in the layer is free to escape along the edges, are discussed. For
the two-dimensional panel the following boundary conditions have to be ful"lled:

f Air layer: open edges: p"0 for x"$k
px

.
f Plates 1 and 2: zero de#ection: h

1,2
"0 and zero bending moment:

d2h
1,2

/dx2"0 for x"$k
px

.

From the di!erential equations and the boundary conditions, the eigenfrequencies and
mode shapes of the coupled system can be derived. Equations (17)}(19) lead to a sixth order
characteristic equation in u. An iterative root "nding procedure is used to obtain the, in
general complex, eigenfrequencies and their corresponding eigenmodes (see also Appendix
A). The viscous damping coe$cient corresponding with angular eigenfrequency u

r
is

calculated from

f
r
"

Im(u
r
)

Du
r
D

]100%, (21)

where r is the mode number. For the present con"guration, the rth eigenfunction describing
the motion of the "rst panel is of the form:

h
1
(x)"A

r
sin A

rn
2 A

x

k
px

#1BB . (22)

The eigenfunctions describing the motion of the second panel and the pressure in the air
layer depend on the situation considered. Two di!erent situations are distinguished:

f Identical plates (equal thickness).
f Non-identical plates (di!erent thickness).

3.1. IDENTICAL PLATES

When both plates have the same thickness and are vibrating in phase, the eigenfunction
of the second plate is equal to the eigenfunction of the "rst plate:

h
2
(x)"A

r
sin A

rn
2 A

x

k
px

#1BB . (23)

Because there is no relative displacement between the panels, the resulting pressure
perturbation is zero,

p(x)"0. (24)

For this situation, the eigenfrequencies of the system remain the same as for the panels in
vacuum, given by

f
vac,r, j

"

1

2n A
rn
2 B

2

S
D
j

l4
x
o
pj

t
j

. (25)

Obviously, there is no in#uence of the air layer on the dynamical behaviour of the panels;
the eigenfrequencies are independent of the thickness of the air layer and no damping is



Figure 2. Eigenfrequencies and damping coe$cients of the "rst four out-of-phase modes of the identical
double-panel system.

Figure 3. (a) Pumping e!ect for a double-wall panel with plates vibrating out of phase. (b) For the in-phase
vibration the amplitudes are equal so there is no pumping e!ect.
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created. In reality, however, there will be a very small added mass e!ect of the air layer on
the vibration of the plates. Because in the low reduced frequency model the inertia forces in
the z direction are neglected, the model does not predict any in#uences of the air layer in this
situation.

When the plates are vibrating out of phase, the eigenfunctions for the pressure and the
second plate, respectively, are

p (x)"A
r

k2c
X2

1
e
1
CA

rn
2 B

2
!X2

1D sin A
rn
2 A

x

k
px

#1BB , (26)

h
2
(x)"!A

r
sin A

rn
2 A

x

k
px

#1BB . (27)

Note that for identical panels X
1
"X

2
and e

1
"e

2
. In Figure 2, the eigenfrequencies and

damping values of the "rst four out-of-phase eigenmodes are given as a function of the
thickness of the air layer for the situation with t

1
"t

2
"1)0 mm. The value for l

x
is 0)245 m.

For this situation the "rst four in-vacuum frequencies are 10)1, 40)2, 90)6 and 161)0 Hz
respectively. The in#uence of the air layer on the eigenfrequencies of the plates increases for
decreasing thickness of the air layer. The eigenfrequencies in the situation with air layer are
lower than the frequencies in vacuum, due to the added mass e!ect caused by pumping of
air in the air layer (see Figure 3). The damping increases for decreasing thickness of the air
layer. For a large thickness of the air layer, the eigenfrequencies of the double-panel system
approach the eigenfrequencies in vacuum. In the calculations the thickness of the air layer is
decreased until a critical damping situation (f"100%) is reached. The critical damping
situation is chosen because for higher damping values a very strong coupling between the



Figure 4. First four out-of-phase mode shapes of the identical panel system, 2h
0
"10 mm.
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plates exists. This situation has to be avoided so that pumping of air is preserved. It will be
clear that for the vacuum situation the damping equals zero. The mode shapes for
2h

0
"10 mm are given in Figure 4.

3.2. NON-IDENTICAL PLATES

The eigenfunctions for the pressure and the motion of the second plate for two
non-identical plates vibrating in phase, are given by

p (x)"A
r

k2c
X2

1
e
1
CA

rn
2 B

4
!X2

1D sin A
rn
2 A

x

k
px

#1BB , (28)

h
2
(x)"!A

r

X2
2
e
2

X2
1
e
1

[(rn/2)4!X2
1
]

[(rn/2)4!X2
2
]

sin A
rn
2 A

x

k
px

#1BB. (29)

The eigenfrequencies and damping values as a function of the thickness of the air layer of
the "rst four modes for the situation with t

1
"1 mm and t

2
"2 mm are given in Figure 5,

the value for l
x

is again 0)245 m. The eigenfrequencies of the thickest plate in vacuum are
20)1, 80)5, 181)1 and 322)0 Hz. Therefore, it can be seen that the coupled eigenfrequencies
are dominated by the thickest plate. The coupled eigenfrequencies are lower than in
vacuum, because of two reasons. The "rst reason is that there is a small added mass e!ect
because of the air in the gap. Both plates do not move with the same amplitude, so there is
a net pumping e!ect in the air layer, as sketched in Figure 6. However, the e!ect is
considerably less than for the out-of-phase situation as can be seen from the damping curve
in Figure 5. The second and main reason for the eigenfrequencies of the double-wall panel
to decrease is that the two plates for small air layers are coupled in such a way that they



Figure 5 . Eigenfrequencies and damping coe$cients of the "rst four in-phase modes of the double-wall panel
with non-identical plates.

Figure 6. Pumping e!ect for a double-wall panel with plates vibrating in phase. (a) For identical plates the
amplitudes are equal so there is no pumping e!ect. (b) For non-identical plates there is a small pumping e!ect due
to a di!erence in amplitude.
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vibrate as one panel with a sti!ness equal and mass equal to

D
total

"D
1
#D

2
"AA

t
1

t
2
B
3
#1B D

2
"

9

8
D

2
,

(30)

m
total

"m
1
#m

2
"A

t
1
t
2

#1Bm
2
"

3

2
m

2
.

From the expression for the vacuum frequencies, equation (25), it follows that the resulting

eigenfrequencies are J4/3 times lower than the vacuum frequencies of plate 2. For small air
layers there is hardly any pumping e!ect, so the damping coe$cients become very small.
The eigenfrequencies and damping values as a function of the thickness of the air layer for
two plates vibrating out of phase for the situation with t

1
"1 mm and t

2
"2 mm are given

in Figure 7. From the "gures it follows that the out-of-phase modes are dominated by the
thinnest plate. This is the reason why Figures 2 and 7 show a large resemblance.

The results so far demonstrate that high damping levels can be obtained for double-wall
panels with narrow air layers between them.

4. HARMONIC RESPONSE

In this section the response of the double-wall panel to a harmonic excitation is
considered. The response behaviour forms the basis for the transmission of sound as will be
discussed in the next section.

Suppose that the "rst plate is subjected to a harmonic external pressure "eld
F(x, t)"f (x) e*ut (see Figure 8). Equation (18) changes into

d4h
1

dx4
!

X2
1

k4
px

h
1
"

X2
1
e
1

ck4
px

k2
p!f (x). (31)



Figure 7. Eigenfrequencies and damping of the "rst four out-of-phase modes of the non-identical double-panel
system.

Figure 8. Double-wall panel subjected to an external pressure "eld.
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The responses of plate 1, plate 2, and the air layer are written as linear combinations of
eigenmodes:

h
1
(x)"

=
+
r/1

A
r
sin A

rn
2 A

x

k
px

#1BB , (32)

h
2
(x)"

=
+
r/1

B
r
sin A

rn
2 A

x

k
px

#1BB , (33)

p(x)"
=
+
r/1

C
r
sin A

rn
2 A

x

k
px

#1BB . (34)

Substitution of equations (32)}(34) into the equations of motion ((17), (31) and (19)) yields
the participation factors:

A
r
"

!k4
px

F
r

g
r,1

#X2
1
e
1
[X2

2
e
2
/g

r,2
!k2Q

r
(s)/k2

px
]~1

, (35)

B
r
"

!k4
px

F
r

g
r,1

[1!Q
r
(s) k2g

r,2
/k2

px
X2

2
e
2
]#g

r,2
X2

1
e
1
/X2

2
e
2

, (36)

C
r
"

k4
px

F
r

g
r,1

[X2
2
e
2
k2cg

r,2
!Q

r
(s)/k2

px
c]#X2

1
e
1
/k2c

(37)
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with

g
r,1

"A
rn
2 B

4
!X2

1
, g

r,2
"A

rn
2 B

4
!X2

2
, (38)

e
1
"

o
0
h
0

o
p1

t
1

, e
2
"

o
0
h
0

o
p2

t
2

, (39)

F
r
"

1

k
px
P

kpx

~kpx

f (x) sin A
rn
2 A

x

k
px

#1BB dx, Q
r
(s)"!C2B(s) A

rn
2 B

2
#

k2
px

c
n (sp)D . (40)

The dimensionless frequency response function for the second plate becomes

H (u, x
p
)"

h
2
(x

p
)

G
"

1

G

=
+
r/1

!F
r
k4
px

sin(rn/2(x
p
#1))

g
r,1

[1!Q
r
(s) k2g

r,2
/k2

px
X2

2
e
2
]#g

r,2
X2

1
e
1
/X2

2
e
2

(41)

with

G"P
kpx

~kpx

D f (x) D dx, (42)

and x
p
the location on the second plate where the response is calculated. In order to excite

both the symmetric and asymmetric modes a pressure "eld is chosen which consists of
a symmetric and an asymmetric part:

f (x)"(x/k
px

)#1. (43)

For this pressure "eld G"2k
px

and F
r
"!4/rn (!1)r. The response of the identical and

non-identical double-wall structures is calculated for the frequency interval 1}180 Hz and
a layer thickness which varies from 1 to 50 mm. The results for x

p
"k

px
/4 (or xN "l

x
/4) are

given in Figure 9. This "gure shows that the response of a double-wall panel changes
drastically with decreasing thickness of the air layer between the plates. As expected, the
in-phase frequencies for the identical panel system (which are 10)1, 40)2, 90)6 and 161)0 Hz,
respectively), do not depend on the thickness of the air layer. All other eigenfrequencies
decrease for decreasing thickness of the air layer and it can be seen from the decrease and
widening of the peaks that the damping increases. For relative large thicknesses of the air
layer the height of the peaks #uctuates a little. This has no physical meaning but can be
attributed to the discretization of the frequency interval. For the non-identical panel system
both the in-phase and the out-of-phase frequencies decrease and also in this case the
damping increases for decreasing thickness of the air layer.

5. SOUND TRANSMISSION

As a next step, the sound "elds which are produced by a vibrating panel will be
considered. When the normal velocity distribution of the panel is known, the generated
acoustic pressure "eld on the outside of the two plates can be calculated with the Rayleigh
integral for two-dimensional sound radiation. In order to do so, it has to be assumed that
the double-wall panel is placed in an in"nite ba%e (see Figure 10). The pressure at any
position x on the plate is found as a summation of contributions of the de#ections of each



Figure 9. Frequency response function for the identical (a) and non-identical (b) double-wall panel as a function
of the thickness of the air layer.
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point x@ of the plate:

p(u, x)"
ijk

2 P
kpx

~kpx

h (x@)H2
0
( Dx!x@ D) dx@. (44)

H2
0

is the Hankel function of the second kind, order zero. It is a combination of Bessel
functions of the "rst kind, order zero J

0
and of the second kind, order zero Y

0
:

H2
0
"J

0
!iY

0
(45)

The sound power per unit width radiated by each plate is obtained by integrating the sound
intensity over the panel length:

=M
rad

"P
lx

~lx

IM
n
dxN "

p
0
h
0
c
0

2 P
kpx

~kpx

Im[p(x)h (x)*] dx, (46)



Figure 10. Two-dimensional sound radiation of a double-wall panel in an in"nite ba%e.
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where IM
n

is the time-averaged normal intensity. p (x) and h (x)* are the complex
dimensionless amplitudes of the pressure and complex conjugate of the plate de#ection at
position x on the plate respectively.

5.1. ENERGY DISSIPATION WITH A PRESSURE FIELD EXCITATION

When the pressure "eld given in equation (43) is used, the power per unit width which is
dissipated by the double-wall panel can be calculated with (note that force and displacement
are de"ned in opposite direction):

=M
d
"!

D
1
h2
0
u4

2c3
0

P
kpx

~kpx

Im( f (x)h* (x)) dx. (47)

Due to conservation of energy the total power per unit width incident on the panel is
=M

in
"=M

d
#=M

rad,1
#=M

rad,2
. The energy loss is de"ned as the fraction of energy put into the

system that is dissipated by the air layer,

E¸"=M
d
/=M

in
. (48)

The energy loss is a real quantity varying from 0 to 1. For the given pressure "eld the
incident and dissipated power are calculated using trapezoidal numerical integration. The
energy loss is calculated for the double-wall panel with identical and non-identical plates.
The results, given in Figure 11, make clear that in the given frequency domain the fraction of
energy which is dissipated for the non-identical plates is much higher than for the identical
plates. As mentioned earlier, for the non-identical plates the pumping e!ect is much higher
than for the identical plates. For the identical plates the energy loss is zero for the in-phase
modes while for the non-identical plates there is still some energy loss in the in-phase modes,
caused by a relative motion of the two plates.

5.2. POINT EXCITATION

Because in experimental investigations one of the panels is often excited with a shaker
[17], the behaviour of a double-wall panel is also investigated for point excitations. A point
excitation is put on the "rst plate, f (x)"Fd(x!x

f
), where d is the Dirac function and

x
f
"k

px
/2 (or xN

f
"l

x
/2) is the location of the force on plate 1 (actually the force is a line

force because a situation is considered which is in"nite in the y direction). For this case the



Figure 11. Energy loss for the identical (left) and non-identical (right) double-wall panel, 2h
0
"1 mm, excited

with the pressure "eld given in equation (43).

Figure 12. Energy loss for the identical (left) and non-identical (right) double-wall panel with point excitation,
2h

0
"1 mm.
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power per unit width that is dissipated by the air layer is given by

=M
d
"!

D
1
h2
0
u4

2c3
0

F Im(h*(x
f
)).

For the point source the energy loss is calculated for the double-wall panel with identical
and non-identical plates. The results are given in Figure 12. In the case of identical plates,
again, no energy is dissipated when the in-phase modes are excited. The fourth in-phase
mode ( f+161 Hz) is not excited, because x

f
is located in a node of the corresponding mode

shape. For the non-identical plates the fraction of incident energy which is dissipated is
much higher.

The "gures in this section show that a signi"cant amount of energy can be dissipated by
viscothermal e!ects in the air layer. This dissipation is related to the pumping of air in the
layer. In order to create a damping e!ect, the layer thickness and the ratio of plate
thicknesses has to be chosen carefully. If the layer thickness is chosen to be very large, the
viscothermal e!ects are very small. If the layer thickness is very small, the coupling between
the two plates is very strong. Then, it will be di$cult to excite the plates with a relative
motion to each other and a small amount of damping e!ect is created. These considerations
show that the layer thickness has to be chosen to be small while the plates are left to vibrate
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independently. For a given frequency range and freedom of parameter choice there might be
an optimum con"guration.

5.3. PLANE WAVE EXCITATION: SOUND TRANSMISSION LOSS

Consider a plane wave PM
i
(xN )"Re(1

2
Ce~*ux6 @c0 4*/ h) incident on plate 1 making an angle

h with the normal of plate 1 (see Figure 13). The excitation for the "rst plate is now the
so-called blocked pressure "eld [18]: f (x)"Re(c4

0
C/D

1
h
0
u4 e~*x 4*/ h). In the case of an

acoustic excitation it is quite common to consider the sound transmission not in terms of
energy loss but in terms of sound transmission loss ¹¸ which is calculated from

¹¸"10 log (=M
in
/=M

rad,2
). (49)

=M
in

is in this case the power per unit width of the incident wave:

=M
in
"(C2l

x
cos h/4o

0
c
0
)#=M

rad,2
. (50)

Because the exterior "eld is not included in the equations of motion of the plates it is more
realistic to add the radiated power of plate 2 to the incident power in order to obtain proper
values for the transmission loss. The sound transmission loss for a number of incident
angles for both the identical and non-identical panel system is given in Figure 14. It can be
seen that for normal incidence (h"0) only the symmetric modes are excited and not the
asymmetrical modes.

5.4. DIFFUSE SOUND FIELD: SOUND TRANSMISSION LOSS

A more general situation is when a di!use sound "eld excites the "rst plate. The
transmission coe$cient (q"=M

rad,2
/=M

in
) for a di!use sound "eld can be obtained from the

transmission coe$cient for plane waves [19]:

q
diff

"P
hl

0

q
plane

(h) sin(2h) dh, (51)

where h
l
is the limiting angle above which zero incidence is assumed. Experiments indicate

that h
l
+783 [8]. The sound transmission loss is obtained from the transmission coe$cient

by the relation ¹¸"10 log(1/q). For the given con"guration the transmission loss and
the energy loss for a di!use "eld is given in Figure 15. The transmission loss for di!use
Figure 13. Plane wave excitation of double-wall panel in an in"nite ba%e.



Figure 14. Sound transmission loss for the identical (left) and non-identical (right) double-wall structure for
three di!erent angles of incidence, 2h

0
"1 mm.

Figure 15. Sound transmission loss and energy loss for the identical (left) and non-identical (right) double-wall
structure for a di!use sound "eld, 2h

0
"1 mm. (**) Viscothermal e!ects included, ( - - - - ) adiabatic, inviscid.
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sound "elds gives results which are somewhere between the results for some single
angles of incidence shown in Figure 14. It can be seen as an average of all angles of
incidence.

In Figure 15, the transmission loss is also given for the adiabatic and inviscid situation. In
this way, the in#uence of the viscothermal e!ects becomes visible (note that the energy loss
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for the adiabatic and inviscid situation is always zero). Figure 15 shows that the in#uence of
viscothermal e!ects on the transmission loss is very small. Only around the eigenfrequencies
are there small di!erences between the results. This observation con"rms the well-known
fact that damping has only e!ect for resonant behaviour of the panels and hardly in#uences
the overall transmission loss. The transmission loss in the low-frequency region is mainly
governed by the mass and sti!ness of the panels and there is a minor in#uence of the
damping, an observation which can also be found in standard text books, e.g., reference
[18]. It is therefore important to distinguish between the energy loss and the transmission
loss. The energy loss is the fraction of incident energy which is dissipated in the air layer, and
it is thus a quantity which gives information only about the dissipation. In the transmission
loss the power is considered which is travelling towards the panel. This is not necessarily the
energy which is injected into the panel because much of the incident energy is re#ected. The
transmission loss therefore gives information about the combined e!ect of re#ection and
dissipation by the panel. Thus, the transmission loss can be high while there is no energy
dissipation and the energy loss is low.

6. DISCUSSION AND CONCLUSIONS

A new, very e$cient analytical model is used to predict the vibrational and acoustic
behaviour of double-wall panels. The model which is used for obtaining the results includes
all relevant e!ects, such as viscothermal wave propagation and full acousto-elastic
interaction. Furthermore, the model is, compared with other models including all e!ects,
highly e$cient, which makes it possible to perform design studies easily. In this paper, only
simply supported double-panel systems, in"nite in one direction and with open edges are
discussed. It is possible, although not straightforward, to use more complicated
con"gurations and other boundary conditions than discussed in this paper. This will result
in slightly more complicated models for which the general conclusions drawn in this paper
will also hold. Also #uids other than air and other plate materials can be used. From the
results given in this paper it can be concluded that the damping and energy loss can be
greatly increased by taking advantage of the dissipative behaviour of small air layers. The
damping is mainly introduced by the viscosity of the medium. Thermal e!ects play a minor
role for the damping properties. This was already observed by Fox and Whitton [12]. The
in#uence of viscothermal e!ects on the transmission loss is limited to small frequency bands
around eigenfrequencies of the panel. Furthermore, the solutions presented are suitable as
a reference for testing numerical codes.
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APPENDIX A: COMPUTATION OF THE EIGENFREQUENCIES OF
A TWO-DIMENSIONAL DOUBLE-WALL PANEL

In this appendix the solution procedure for deriving the eigenfrequencies of a double-wall
panel, in"nite in one direction, with simply supported plates and a narrow open air layer in
between, is presented. The three equations governing the problem are:

d2p

dx2
"
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The boundary conditions for simply supported plates and an open air layer are

p"0 for x"$k
px

, (A.4)

h
1,2

"0 for x"$k
px

, (A.5)

d2h
1,2

dx2
"0 for x"$k

px
. (A.6)

Substitution of the three di!erential equations leads to the following di!erential equation in
h
2
:
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An eigenfunction which ful"lls the boundary conditions is
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Substitution of this function in equation (A.7) and multiplication by k8
px

leads to the
following characteristic equation:
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This is a non-linear equation in u from which the roots have to be found. It is easy to see
that without coupling, i.e., e

1
"0 and e

2
"0, the eigenfrequencies of the uncoupled systems

are found. From the coupled characteristic equation the complex roots are found with
a root "nding procedure in MATLAB. For the root "nding procedure start values have to
be de"ned. As a "rst guess the eigenfrequencies of the uncoupled system can be taken. For
better convergence it is, however, advisable to take the eigenfrequencies of the inviscid,
adiabatic system. These, real-valued, eigenfrequencies follow from the following sixth order
polynomial:

CA
rn
2 B

4
!X2

1DCA
rn
2 B

4
!X2

2DC!A
rn
2 B

2 k2

k2
px

#k2D#
1

2
(X2

1
e
1
#X2

2
e
2
)A

rn
2 B

4
!

1

2
X2

1
X2

2
(e
1
#e

2
)"0.

(A.10)

APPENDIX B: NOMENCLATURE

A
r
, B

r
, C

r
dimensionless amplitudes of participating mode r

C pressure amplitude of plane wave
B(s) function accounting for viscous or thermal e!ects
C
p

speci"c heat at constant pressure
C

v
speci"c heat at constant volume
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c
0

undisturbed speed of sound
D
j
"E

j
t3
j
/12(1!l2

j
) bending sti!ness of plate j

E
j

Young's modulus of plate material j
E¸ energy loss
f
vac,r

vacuum frequency of mode r
f (x) amplitude of pressure excitation
F(x, t) pressure excitation
F
r

coe$cient
G integrated force amplitude
hM "h

0
[2#[h

1
!h

2
]e*ut] layer thickness

h
0

mean half-year thickness
H(u, x

p
)"h

2
(x

p
)/G frequency response function

H2
0

Hankel function of the second kind, order zero
h
1
e*ut dimensionless de#ection of plate 1

h
2
e*ut dimensionless de#ection of plate 2

i"J!1 imaginary unit
IM time-averaged normal intensity
J
0

Bessel function of "rst kind, order zero
k"uh

0
/c

0
reduced frequency

k
px
"ul

x
/c

0
dimensionless wave number in the x direction

k
py
"ul

y
/c

0
dimensionless wave number in the y direction

l
x

half-length in the x direction
l
y

half-length in the y direction
n(sp) polytropic coe$cient
pN "p

0
[1#pe*ut] pressure

p
0

mean pressure
p dimensionless pressure amplitude
Q

r
(s) coe$cient

r mode number
s"h

0
Jo

0
u/k shear wave number

¹M "¹
0
[1#¹e*ut] temperature

¹
0

mean temperature
¹ dimensionless temperature amplitude
t time
t
j

thickness of plate j
¹¸ transmission loss
v6 "c

0
ve*ut velocity vector

v dimensionless amplitude of the velocity vector
=M

in
incident power per unit width

=M
d

dissipated power per unit width
=M

rad
radiated power per unit width

xN "c
0
x/u x-co-ordinate

x dimensionless x-co-ordinate
x
f

dimensionless x-co-ordinate of point source location
x
p

dimensionless x-co-ordinate of response location
x@ dimensionless x-co-ordinate of receiving point
yN "c

0
y/u y-co-ordinate

y dimensionless y-co-ordinate
Y
0

Bessel function of second kind, order zero
zN"h

0
z z-co-ordinate

z dimensionless z-co-ordinate
C(s) propagation coe$cient
c"C

p
/C

v
ratio of speci"c heats

e
j
"o

0
h
0
/o

pj
t
j

ratio of mass per unit area
h angle between incident wave and plate normal
g
r,1

, g
r,2

modal coe$cients
j thermal conductivity
k dynamic viscosity
l Poisson's ratio of plate material
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oN "o
0
[1#oe*ut] density

o
0

mean density of air
o dimensionless density amplitude
o
pj

density of plate material j
p"JkC

p
/j square root of the Prandtl number

X
j

dimensionless frequency corresponding with plate j
u angular frequency
u

r
eigenfrequency of mode r

q transmission coe$cient
q
plane

transmission coe$cient for plane wave
q
diff

transmission coe$cient for di!use sound "eld
$2 dimensionless di!erential operator
$4 dimensionless di!erential operator
f
r

viscous damping coe$cient of mode r
* complex conjugate
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